Abstract

We have carried out an evolutionary study of the two proteins encoded by the RNA 3 from members of the plant virus family Bromoviridae. Using maximum likelihood methods, we have inferred the patterns of amino acid substitution that better explain the diversification of this viral family. The results indicate that the molecular evolution of this family was rather complex, with each protein evolving at different rates and according to different patterns of amino acid substitution. These differences include different amino acid equilibrium frequencies, heterogeneity in substitution rates among sites, and covariation among sites. Despite these differences, the model of protein evolution that better fits both proteins is one specifically proposed for the evolution of globular proteins. We also found evidence for coevolution between domains of these two proteins. Finally, our analyses suggest that the molecular clock hypothesis does not hold, since different lineages evolved at different rates. The implications of these results for the taxonomy of this important family of plant viruses are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call