Abstract

BackgroundLNX (Ligand of Numb Protein-X) proteins typically contain an amino-terminal RING domain adjacent to either two or four PDZ domains - a domain architecture that is unique to the LNX family. LNX proteins function as E3 ubiquitin ligases and their domain organisation suggests that their ubiquitin ligase activity may be targeted to specific substrates or subcellular locations by PDZ domain-mediated interactions. Indeed, numerous interaction partners for LNX proteins have been identified, but the in vivo functions of most family members remain largely unclear.ResultsTo gain insights into their function we examined the phylogenetic origins and evolution of the LNX gene family. We find that a LNX1/LNX2-like gene arose in an early metazoan lineage by gene duplication and fusion events that combined a RING domain with four PDZ domains. These PDZ domains are closely related to the four carboxy-terminal domains from multiple PDZ domain containing protein-1 (MUPP1). Duplication of the LNX1/LNX2-like gene and subsequent loss of PDZ domains appears to have generated a gene encoding a LNX3/LNX4-like protein, with just two PDZ domains. This protein has novel carboxy-terminal sequences that include a potential modular LNX3 homology domain. The two ancestral LNX genes are present in some, but not all, invertebrate lineages. They were, however, maintained in the vertebrate lineage, with further duplication events giving rise to five LNX family members in most mammals. In addition, we identify novel interactions of LNX1 and LNX2 with three known MUPP1 ligands using yeast two-hybrid asssays. This demonstrates conservation of binding specificity between LNX and MUPP1 PDZ domains.ConclusionsThe LNX gene family has an early metazoan origin with a LNX1/LNX2-like protein likely giving rise to a LNX3/LNX4-like protein through the loss of PDZ domains. The absence of LNX orthologs in some lineages indicates that LNX proteins are not essential in invertebrates. In contrast, the maintenance of both ancestral LNX genes in the vertebrate lineage suggests the acquisition of essential vertebrate specific functions. The revelation that the LNX PDZ domains are phylogenetically related to domains in MUPP1, and have common binding specificities, suggests that LNX and MUPP1 may have similarities in their cellular functions.

Highlights

  • LNX (Ligand of Numb Protein-X) proteins typically contain an amino-terminal RING domain adjacent to either two or four PDZ domains - a domain architecture that is unique to the LNX family

  • LNX5 (PDZK4, PDZRN4L) lacks the RING domain, it is clearly a member of the family based on high sequence homology to LNX3 and LNX4 [3,4]

  • Fish, marsupial, amphibian and bird genomes have a third LNX1/2-like gene that has been termed LNX-like or LNX2b in zebra fish [29,30] and confusingly called LNX3 in chicken and marsupials [31]. We suggest that this paralog be called LNX2b to reflect the fact that it encodes a protein that is most similar to LNX2

Read more

Summary

Introduction

LNX (Ligand of Numb Protein-X) proteins typically contain an amino-terminal RING domain adjacent to either two or four PDZ domains - a domain architecture that is unique to the LNX family. In most mammals the LNX (Ligand of Numb Protein-X) or PDZRN (PDZ and RING) family of proteins consists of five members that, in the interest of clarity, we shall refer to hereafter as LNX1 - LNX5. These proteins are characterized by the presence of a RING domain (Really Interesting New Gene) followed by between one and four PDZ domains (PSD-95, DlgA, ZO-1). The presence of RING and PDZ domains in one protein is unique to the LNX family. RING domains function as the catalytic component of E3 ubiquitin ligases - enzymes that catalyze the final step in the attachment of ubiquitin to substrate proteins and are believed to confer specificity to the

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call