Abstract

Molecular evolution is believed to proceed in small steps. The step size can be defined by a distance reflecting physico-chemical disparities between amino acid (AA) pairs that can be exchanged by single 1-bp mutations. We show that AA substitution rates are strongly and negatively correlated with this distance but only when positive selection is relatively weak. We use the McDonald and Kreitman test to separate the influences of positive and negative selection. While negative selection is indeed stronger on AA substitutions generating larger changes in chemical properties of AAs, positive selection operates by different rules. For 65 of the 75 possible pairs, positive selection is comparable in strength regardless of AA distance. However, the ten pairs under the strongest positive selection all exhibit large leaps in chemical properties. Five of the ten pairs are shared between Drosophila and Hominoids, thus hinting at a common but modest biochemical basis of adaptation across taxa. The hypothesis that adaptive changes often take large functional steps will need to be extensively tested. If validated, molecular models will need to better integrate positive and negative selection in the search for adaptive signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call