Abstract

The anterior interpositus nucleus (AIN) is the proposed site of memory formation of eyeblink conditioning. A large part of the underlying molecular events, however, remain unknown. To elucidate the molecular mechanisms, we examined transcriptional changes in the AIN of mice trained with delay eyeblink conditioning using microarray, quantitative real-time RT-PCR, and in situ hybridization techniques. Microarray analyses suggested that transcriptionally up-regulated gene sets were largely different between early (3-d training) and late (7-d) stages. Quantitative real-time RT-PCR aided by laser microdissection indicated that the expression of representative EARLY genes (Sgk, IkBa, and Plekhf1) peaked at 1-d training in both the paired and unpaired conditioning groups, and was maintained at a higher level in the paired group than in the unpaired group after 3-d training. In situ hybridization revealed increased expression of these genes in broad cerebellar areas, including the AIN, with no hemispheric preferences. In contrast, the expression of representative LATE genes (Vamp1, Camk2d, and Prkcd) was selectively increased in the AIN of the 7-d paired group, with dominance in the ipsilateral AIN. Increased Vamp1 mRNA expression was restricted to the ipsilateral dorsolateral hump, a subregion of the AIN. These expression patterns of two distinct subsets of genes fit well with the two-stage learning theory, which proposes emotional and motor learning phases, and support the notion that AIN has a crucial role in memory formation of eyeblink conditioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call