Abstract

The tribe Antirrhineae consists of 29 genera distributed in the New World and the Old. Phylogenetic analyses of ITS and ndhF sequences served to recognize six main lineages: Anarrhinum group (Anarrhinum, Kickxia); Linaria group (Linaria); Maurandya group (Cymbalaria, Asarina, Maurandella, Rhodochiton, Lophospermum); Schweinfurthia group (Pseudorontium, Schweinfurthia); Antirrhinum group (Antirrhinum, Pseudomisopates, Misopates, Acanthorrhinum, Howeliella, Neogarrhinum, Sairocarpus, Mohavea, Galvezia); Chaenorrhinum group (Chaenorrhinum, Albraunia, Holzneria). Parsimony (cladistics), distance-based (Neighbor-Joining), and Bayesian inference reveal that: (1) the tribe is a natural group; (2) genera such as Linaria, Schweinfurthia, Kickxia, and Antirrhinum also form natural groups; (3) three Antirrhineae lineages containing genera from the New and Old World are the result of three intercontinental disjunctions displaying similar levels of ITS-sequence divergence and differentiation times (Oligocene-Miocene); (4) evolution of flower shapes is not congruent with primitiveness of personate flowers; (5) both polyploidy and dysploidy appear to be responsible for most variation in chromosome number in the six main lineages. Nuclear and chloroplast evidence also supports the split of American and Mediterranean species of Antirrhinum into different genera, a result that should be contemplated in the interest of a more natural (monophyletic) taxonomy. Nucleotide additivity causes poor resolution in the ITS analysis of 22 species of Mediterranean Antirrhinum and lead us to interpret extensive hybridization in the Iberian Peninsula.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call