Abstract
BackgroundThe genetics of cerebellar ataxia is complex. Hundreds of causative genes have been identified, but only a few cause more than single cases. The spectrum of ataxia-causing genes differs considerably between populations. The aim of the study was to investigate the molecular epidemiology of ataxia in the Finnish population.Patients and methodsAll patients in hospital database were reviewed for the diagnosis of unspecified ataxia. Acquired ataxias and nongenetic ataxias such as those related to infection, trauma or stroke were excluded. Sixty patients with sporadic ataxia with unknown etiology and 36 patients with familial ataxia of unknown etiology were recruited in the study. Repeat expansions in the SCA genes (ATXN1, 2, 3, 7, 8/OS, CACNA1A, TBP), FXN, and RFC1 were determined. Point mutations in POLG, SPG7 and in mitochondrial DNA (mtDNA) were investigated. In addition, DNA from 8 patients was exome sequenced.ResultsA genetic cause of ataxia was found in 33 patients (34.4%). Seven patients had a dominantly inherited repeat expansion in ATXN8/OS. Ten patients had mitochondrial ataxia resulting from mutations in nuclear mitochondrial genes POLG or RARS2, or from a point mutation m.8561C > G or a single deletion in mtDNA. Interestingly, five patients were biallelic for the recently identified pathogenic repeat expansion in RFC1. All the five patients presented with the phenotype of cerebellar ataxia, neuropathy, and vestibular areflexia (CANVAS). Moreover, screening of 54 patients with Charcot-Marie-Tooth neuropathy revealed four additional patients with biallelic repeat expansion in RFC1, but none of them had cerebellar symptoms.ConclusionsExpansion in ATXN8/OS results in the majority of dominant ataxias in Finland, while mutations in RFC1 and POLG are the most common cause of recessive ataxias. Our results suggest that analysis of RFC1 should be included in the routine diagnostics of idiopathic ataxia and Charcot-Marie-Tooth polyneuropathy.
Highlights
The genetics of cerebellar ataxia is complex
All the five patients presented with the phenotype of cerebellar ataxia, neuropathy, and vestibular areflexia (CANVAS)
Our results suggest that analysis of RFC1 should be included in the routine diagnostics of idiopathic ataxia and Charcot-Marie-Tooth polyneuropathy
Summary
The genetics of cerebellar ataxia is complex. Hundreds of causative genes have been identified, but only a few cause more than single cases. The spectrum of ataxia-causing genes differs considerably between populations. The aim of the study was to investigate the molecular epidemiology of ataxia in the Finnish population. The majority of the hereditary ataxias are caused by dominantly inherited trinucleotide. The differences may be explained by population history, as small founder population and rapid expansion associated with geographic isolation of subpopulations have resulted in unique genetic make-up and Finnish disease heritage [8]. New sequencing techniques have enabled identification of novel ataxia-causing mutations but, there are almost 600 genes associated with ataxic disorders and a single gene resolves only few cases. The most recent ataxia-causing mutation has been found in the intronic region of RFC1 gene [9, 10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.