Abstract
It is an enormous challenge to achieve highly efficient organic room-temperature phosphorescence (RTP) with a long lifetime. We demonstrate that, by bridging the carbazole and halogenated phenyl ring with a methylene linker, RTP phosphors CzBX (X=Cl, Br) present high phosphorescence efficiency (ΦPh ). A ΦPh up to 38 % was obtained for CzBBr with a lifetime of 220 ms, which is much higher than that of compounds CzPX (X=Cl, Br) with a C-N bond as a linker (ΦPh <1 %). Single-crystal analysis and theoretical calculations revealed that, in the crystal phase, intermolecular π-Br interactions accelerate the intersystem crossing process, while tetrahedron-like structures induced by sp3 methylene linkers restrain the nonradiative decay channel, leading to the high phosphorescence efficiency in CzBBr. This research paves a new road toward highly efficient and long-lived RTP materials with potential applications in anti-counterfeiting or data encryption.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.