Abstract

AbstractBlending metakaolin (MK), a calcined clay, into portland cement (PC) improves resulting concrete material properties, ranging from strength to durability, as well as reducing embodied CO2 and energy. However, superplasticizers developed for PC can be inefficient or ineffective for improving the dispersion of PC‐MK blends. Here, a novel machine algorithm is applied to tailor a superplasticizer to address poor flowability characteristic of 15/85 blends of MK‐PC. A hierarchical machine learning (HML) system is trained on a library of seven superplasticizers using a middle layer, which represents underlying physical interactions that determine system responses, based on polymer contributions to physicochemical forces in both the pore solution and particle surface. Following reparameterization of the response surface by polymer composition, the trained algorithm predicted that a novel styrene sulfonate‐methacrylic acid‐poly(ethylene glycol) methacrylate copolymer would maximize slump of the MK‐PC paste. Synthesis of the algorithm prediction resulted in a water‐soluble polymer with an extremely high intrinsic viscosity that nevertheless increased the slump flow of the MK‐PC paste but did not plasticize pure PC paste. The results from this study demonstrate the importance of HML as a design tool for the molecular engineering of complex material systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.