Abstract

The design and construction of molecular nanostructures with tunable topological structures are great challenges in molecular nanotechnology. Herein, we demonstrate the molecular engineering of Schiff-base bond connected molecular nanostructures. Building module construction has been adopted to modulate the symmetry of resulted one dimensional (1D) and two dimensional (2D) polymers. Specifically, we have designed and constructed 1D linear and zigzag polymers, 2D hexagonal and chessboard molecular nanostructures by varying the number of reactive sites and geometry and symmetry of precursors. It is demonstrated that high-quality conjugated polymers can be fabricated by using gas-solid interface reaction. The on-demanding synthesis of polymeric architectures with diverse topologies paves the way to fabricate molecular miniature devices with various desired functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.