Abstract

AbstractLow dimensional (LD) perovskite materials generally exhibit superior chemical stability against ambient moisture and thermal stress than that of 3D perovskites. Recently, LD perovskite has been used as a passivation layer on the surface of 3D perovskite grains. Although various LD perovskites have been developed focusing on their hydrophobicity, the impact of crystal structure of LD perovskite on the photovoltaic performance of perovskite solar cell (PSC) is still uncertain. In this work, the effects of the structural characteristics of LD perovskites on the crystal formation of formamidinium lead triiodide (α‐FAPbI3) and on the optoelectrical properties of PSCs are elucidated. The phase‐transformation kinetics of FAPbI3 mixed with LD perovskites is studied using the Johnson–Mehl–Avrami–Kolmogorov model. It is found that the arrangement of PbI6 octahedra in the LD perovskite changes the rate of α‐FAPbI3 formation. Facilitated nucleation of α‐FAPbI3 at the LD/FAPbI3 interface results in minimal structural disorder and prolonged charge‐carrier lifetimes. As a result, the PSC with the optimized LD perovskite structure exhibits a power conversion efficiency of 21.25% from a reverse current–voltage scan, and stabilized efficiency of 19.95% with excellent ambient stability without being encapsulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.