Abstract

The electron deficiency and trans-planar conformation of bithiazole is potentially beneficial for the electron-transport performance of organic semiconductors. However, the incorporation of bithiazole into polymers through a facile synthetic strategy remains a challenge. Herein, 2,2′-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienyldiketopyrrolopyrrole-bithiazole), PDBTz. PDBTz exhibited electron mobility reaching 0.3 cm2 V–1 s–1 in organic field-effect transistor (OFET) configuration; this contrasts with a recently discussed isoelectronic conjugated polymer comprising an electron-rich bithiophene and dithienyldiketopyrrolopyrrole, which displays merely hole-transport characteristics. This inversion of charge-carrier transport characteristics confirms the significant potential for bithiazole in the development of electron-transport semiconducting materials. Branched 5-decylheptacyl side chains were incorporated into PDBTz to enhance polyme...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.