Abstract
The thienopyrazine (TPz) building block allows for NIR photon absorption in dye-sensitized solar cells (DSCs) when used as a π-bridge. We synthesized and characterized 7 organic sensitizers employing thienopyrazine (TPz) as a π-bridge in a double donor, double acceptor organic dye design. Donor groups are varied based on electron donating strength and sterics at the donor-π bridge bond with the acceptor groups varied as either carboxylic acids or benzoic acids on the π-bridge. This dye design was found to be remarkably tunable with solution absorption onsets ranging from 750 to near 1000 nm. Interestingly, the solution absorption measurements do not accurately approximate the dye absorption on TiO2 films with up to a 250 nm blue-shift of the dye absorption onset on TiO2. This shift in absorption and the effect on electron transfer properties is investigated via computational analysis, time-correlated single photon counting studies, and transient absorption spectroscopy. Structure-performance relationships were analyzed for the dyes in DSC devices with the highest performance observed at 17.6 mA/cm2 of photocurrent and 7.5% PCE for a cosensitized device with a panchromatic IPCE onset of 800 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.