Abstract
AbstractZinc batteries hold promise for grid‐scale energy storage due to their safety and low cost. A key challenge for the field is identifying cathode materials that can undergo reversible redox reactions at the extreme potentials required for realizing high energy density devices. While organic materials have been extensively explored as cathode materials due to their structural tunability and eco‐friendliness, most reported zinc‐organic batteries exhibit a voltage lower than 1.2 V. In this report, by employing rational molecular design and synthesis, computational analysis, and electrochemical evaluation, the well‐studied neutral p‐type N‐centered is redesigned, triphenylamine organic cathode by replacing three phenyl rings with the smallest aromatic system – cationic cyclopropenium. This results in a novel class of cathode materials with simultaneously enhanced potential, capacity, and stability. The resultant full battery exhibits a high discharge voltage of 1.7 V and an outstanding capacity retention of 95% after 10000 cycles at a discharge capacity of 157.5 mAh g−1cation (103.9 mAh g−1salt).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.