Abstract

β-Alanine is an important precursor for the production of food additives, pharmaceuticals, and nitrogen-containing chemicals. Compared with the conventional chemical routes for β-alanine production, the biocatalytic routes using L-aspartate-α-decarboxylase (ADC) are more attractive when energy and environment are concerned. However, ADC's poorly understood properties and its inherent mechanism-based inactivation significantly limited the application of this enzyme. In this study, three genes encoding the ADC enzymes from Escherichia coli, Corynebacterium glutamicum, and Bacillus subtilis were overexpressed in E. coli. Their properties including specific activity, thermostability, and mechanism-based inactivation were characterized. The ADC enzyme from B. subtilis, which had higher specific activity and thermostability than the others, was selected for further study. In order to improve its activity and relieve its mechanism-based inactivation by molecular engineering so as to improve its catalytic stability, a high-throughput fluorometric assay of β-alanine was developed. From a library of 4000 mutated enzymes, two variants with 18-22% higher specific activity and 29-64% higher catalytic stability were obtained. The best variant showed 50% higher β-alanine production than the wild type after 8h of conversion of L-aspartate, showing great potential for industrial biocatalytic production of β-alanine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.