Abstract

The electron-transporting material (ETM) in inverted perovskite solar cells (PSCs) plays important role in reducing hysteresis and realizing simple processing procedures, while the improvement of power conversion efficiency is limited by low electron mobility and weak perovskite/ETM interface interaction. In this work, three new ETMs (HAT-1, HAT-2, and HAT-3) were designed by introducing methoxyphenyl, imide, and naphthalene groups into the hexaazatriphenylene (HAT) skeleton, based on the ETM HATNASOC7 synthesized experimentally [Jen; Angew. Chem., Int. Ed. 2016, 55, 8999]. Theoretical calculations showed that the electron mobilities of HAT-1, HAT-2, and HAT-3 are 2.98, 3.79, and 13.21 times that of HATNASOC7, which is attributed to the increased C···C and O···H interactions in the newly designed ETMs. More importantly, the evidently decreased perovskite/ETM interface distances and the significantly increased adsorption energies revealed that the interface interactions were markedly enhanced with the newly designed ETMs by forming additional Pb···O interactions, which promote the electron injection. The deep understanding of perovskite/ETM interface properties sheds new light on the complex factors determining the PSC function and paves the way for the rational design of highly efficient and stable components for PSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.