Abstract

A series of chromophores with enhanced second- and third-order nonlinear optical properties were engineered for use in combined second-harmonic and two-photon fluorescence microscopy. Electron-accepting moieties imparted nonlinear optical properties to the chromophores. The electron-rich carbazole core served as a template towards one- or two-dimensional chromophores. More efficient acceptor groups (pyridinium, benzazolium, benzothiazolium) on the carbazole donor core resulted in improved second- and third-order nonlinear optical properties. A selection of these chromophores was tested in a cellular environment with a multimodal multiphoton microscope. The structural differences of the chromophores resulted in high selectivity for mitochondria or the nucleus in two-photon fluorescence and ranging from no signal to high selectivity for mitochondria in the SHG channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call