Abstract

Herein, we explore the strategy of realizing a red-selective thin-film organic photodiode (OPD) by synthesizing a new copolymer with a highly selective red-absorption feature. PCZ-Th-DPP, with phenanthrocarbazole (PCZ) and diketopyrrolopyrrole (DPP) as donor and acceptor units, respectively, was strategically designed/synthesized based on a time-dependent density functional theory calculation, which predicted the significant suppression of the band II absorption of PCZ-Th-DPP due to the extremely efficient intramolecular charge transfer. We demonstrate that the synthesized PCZ-Th-DPP exhibits not only a high absorption coefficient within the red-selective band I region, as theoretically predicted, but also a preferential face-on intermolecular structure in the thin-film state, which is beneficial for vertical charge extraction as an outcome of a glancing incidence X-ray diffraction study. By employing PCZ-Th-DPP as a photoactive layer of Schottky OPD, to fully match its absorption characteristic to the spectral response of the red-selective OPD, we demonstrate a genuine red-selective specific detectivity in the order of 1012 Jones while maintaining a thin active layer thickness of ∼300 nm. This work demonstrates the possibility of realizing a full color image sensor with a synthetic approach to the constituting active layers without optical manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.