Abstract

AbstractElectrodes for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are required in energy conversion and storage technologies. An assembly strategy involves covalently grafting Co corrole 1 onto Fe3O4 nanoarrays grown on Ti mesh. The resulted electrode shows significantly improved activity and durability for OER and ORR in neutral media as compared to Fe3O4 alone and with directly adsorbed 1. It also displays higher atom efficiency (at least two magnitudes larger turnover frequency) than reported electrodes. Using this electrode in a neutral Zn‐air battery, a small charge–discharge voltage gap of 1.19 V, large peak power density of 90.4 mW cm−2, and high rechargeable stability for >100 h are achieved, opening a promising avenue of molecular electrocatalysis in a metal–air battery. This work shows a molecule‐engineered electrode for electrocatalysis and demonstrates their potential applications in energy conversion and storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.