Abstract

The development of efficient blue thermally activated delayed fluorescence (TADF) emitters with an aggregation-induced emission (AIE) nature, for the construction of organic light-emitting diodes (OLEDs), is still insufficient. This can be attributed to the challenges encountered in molecular design, including the inherent trade-off between radiative decay and reverse intersystem crossing (RISC), as well as small singlet-triplet energy splitting (ΔEST) and the requirement for high photoluminescence quantum yields (ΦPL). Herein, we present the design of three highly efficient blue TADF molecules with AIE characteristics by combining π-extended donors with different acceptors to modulate the differences in the electron-donating and electron-withdrawing abilities. This approach not only ensures high emission efficiency by suppressing close π-π stacking, weakening nonradiative relaxation, and enhancing radiative transition but also maintains the equilibrium ratio between the triplet and singlet excitons by facilitating the process of RISC. These emitters exhibit AIE and TADF properties, featuring quick radiative rates and low nonradiative rates. The ΦPL of these emitters reached an impressive 88%. Based on their excellent comprehensive performance, nondoped PICzPMO and PICzPMO OLEDs achieved excellent electroluminescence performance, exhibiting maximum external quantum efficiency (EQEmax) of up to 19.5%, while the doped device achieved a higher EQEmax of 20.8%. This work demonstrated that by fusing π-extended large rigid donors with different acceptors, it is possible to regulate the difference in electron-donating and electron-withdrawing abilities, resulting in a small ΔEST, high ΦPL, and fast RISC process, which is a highly feasible strategy for designing efficient TADF molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.