Abstract
Covalent organic frameworks (COFs) have recently shown great potential for photocatalytic hydrogen production. Currently almost all reports are focused on two-dimensional (2D) COFs, while the 3D counterparts are rarely explored due to their non-conjugated frameworks derived from the sp3 carbon based tetrahedral building blocks. Here, we rationally designed and synthesized a series of fully conjugated 3D COFs by using the saddle-shaped cyclooctatetrathiophene derivative as the building block. Through molecular engineering strategies, we thoroughly discussed the influences of key factors including the donor-acceptor structure, hydrophilicity, specific surface areas, as well as the conjugated/non-conjugated structures on their photocatalytic hydrogen evolution properties. The as-synthesized fully conjugated 3D COFs could generate the hydrogen up to 40.36 mmol h-1 g-1. This is the first report on intrinsic metal-free 3D COFs in photocatalytic hydrogen evolution application. Our work provides insight on the structure design of 3D COFs for highly-efficient photocatalysis, and also reveals that the semiconducting fully conjugated 3D COFs could be a useful platform in clear energy-related fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.