Abstract

Hydroxyquinolone derivatives have proven to be useful for inhibition at the glycine binding site of N-methyl-D-aspartate (NMDA) receptor. In this work the electronic structure, molecular electrostatic potential (MESP) and vibrational characteristics of a set of C(3) substituted 4-hydroxyquino-2-lone (HQ) derivatives, which act as Glycine/NMDA receptor antagonists, have been investigated using the density functional calculations. In the optimized structures a substituent at the C(3) site of HQ tends to adopt a helical structure. MESP investigations reveal that the ligands showing better inhibition activity should possess electron-rich regions extending over the substituent and carbonyl group of HQ. A correlation of inhibitory activity to the molecular electrostatic potential topography at the carbonyl oxygen as well as to the molecular electron density topography turns out to be a significant output of the investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call