Abstract

Pulse-based Electron–Nuclear and ELectron–electron DOuble Resonance (ENDOR/ELDOR) techniques have been applied to molecular spins in order to implement ensemble electron spin-qubit based quantum computers/computing (QC) and quantum information processing (QIP) in the solid state. Pulsed ENDOR-based QC/QIP experiments for super dense coding (SDC) have for the first time been carried out by the use of molecular electron- and nuclear-spin entities such as the stable malonyl radical as matter spin-qubits. The spin-qubit manipulation technology for quantum gate operations in this work is based on the time-proportional-phase-increment (TPPI) technique, enabling us to distinguish between the phases of spin-qubit based entangled states. The TPPI technique, as firstly applied by Mehring et al. (M. Mehring, J. Mende and W. Scherer, Phys. Rev. Lett., 2003, 90, 153001), has illustrated the establishment of quantum entanglement between electron- and nuclear-spin states and mutual interconversion between the electron–nuclear Bell states. The electron-spin 4π-periodicity in phase shows up in the QC/QIP experiments, explicitly and experimentally illustrating the electron-spin spinor nature for the first time. Tripartite QC experiments have been made, showing the occurrence of separable states. Also, the development of novel electron-spin technology to manipulate multi-electron spin-qubits is described. In this work, the pulsed coherent-dual ELDOR for QC/QIP has for the first time been implemented by invoking a novel microwave dual phase-rotation technique. Thus, applications of the coherent-dual ELDOR to molecular electron spin-qubit systems are also discussed, emphasising designing the molecular two electron-qubit systems appropriate for QC/QIP. g- and/or hyperfine A-tensor engineering approaches give us the two- and multi-electron-qubit systems, which have been a materials challenge to implement matter spin-qubit based QC/QIP. The targeted matter spin-qubits can be used to facilitate selective resonant microwave excitations achieved by the pulsed ELDOR technique. In addition to DiVincenzo's five criteria, general requisites for scalable electron spin-qubit systems as 1D periodic robust spin structures are described. According to the requisites, double- or triple-stranded helicates embedding open-shell metal cations are proposed instead of organic molecular spin-qubits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call