Abstract

Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonizing internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance toward non-adapted pathogens they can also be described as “defense elicitors.” In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defense elicitors in the absence of pathogens can promote plant resistance by uncoupling defense activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete, or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context.

Highlights

  • THE ROLE OF DEFENSE ELICITORS IN PLANT IMMUNITY Plants are under constant threat of microbial pathogen attack

  • Cuticles and phytoanticipins are preformed, physical and chemical barriers that limit access of microbes to plant cells (Underwood, 2012; Newman et al, 2013). In addition to these non-inducible defenses, plants recognize and respond to defense elicitors which are signal-inducing compounds perceived by the innate immune system that prime and/or induce defense responses (Henry et al, 2012; Maffei et al, 2012; Newman et al, 2013)

  • We will focus on elicitors from biological origin (Table 1) rather than synthetic analogs of known signaling or defense molecules such as Bion, acibenzolar-S-methyl (ASM), beta-amino-butyric acid (BABA), and cis-jasmone

Read more

Summary

Introduction

THE ROLE OF DEFENSE ELICITORS IN PLANT IMMUNITY Plants are under constant threat of microbial pathogen attack. For example, been shown for plant-derived cell wall components such as oligogalacturonides (Ferrari et al, 2013), proteinaceous pathogen molecules such as bacterial flagellin (Gomez-Gomez and Boller, 2002), oomycete-derived elicitin INF1 (reviewed in Hein et al, 2009) and non-proteinaceous molecules such as lipopolysaccharides (Erbs and Newman, 2012).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call