Abstract
X-ray absorption and resonant Auger spectroscopy were used to study the formation and decay of nitrogen and oxygen core excitations in ionic-molecular solid NaNO3. It has been shown that the most prominent features in the electronic structure of both valence and conduction bands of the NaNO3 crystal are determined by molecular states of the quasi-isolated NO3- group. In the Auger decay following the strongly localized N 1s-->2a(2)(')(pi) and O 1s-->2a(2)(')(pi) core excitations both spectator and participator signals of extremely high intensity have been found. The nuclear out-of-plane motion inside the NO3- group has been shown to be observable by resonant Auger spectroscopy as a strongly non-Raman dispersion of individual participator features upon tuning the photon energy across the N 1s-->2a(2)(')(pi) and O 1s-->2a(2)(')(pi) resonances. All results on electronic and vibrational properties of NaNO3 are compared with those of the gas-phase BF3 molecule, which is isoelectronic and isostructural to the NO3- group. (Less)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.