Abstract

The development of cost-effective molecular tools allowing the amplification of minute amounts of DNA effectively opened the field of molecular ecology for rotifers. Here I review these techniques and the advances they have provided in the understanding of sibling species complexes, clonal structure, resting egg banks, population structure, phylogeographic patterns and phylogenetic relationships in rotifers. Most of the research to date has focused on the rotifer species complex Brachionus plicatilis. The use of DNA sequence and microsatellite variation, in the context of the background knowledge of life history, mating behaviour, and temporal population dynamics in these organisms have revolutionised our views into the processes shaping the genetic diversity in aquatic invertebrates. Rotifers have populations with a very high number of clones in genetic equilibrium. In temporary populations clonal selection is effective in eroding the number of clones. Rotifer populations are strongly differentiated genetically for neutral markers, even at small geographical scales, and exhibit deep phylogeographic structure which might reflect the impact of Pleistocene glaciations. Despite the high potential for dispersal afforded by resting eggs, rotifers display persistent historical colonisation effects, with gene flow effective only at a local scale and with marked isolation by distance. Instances of long-distance transcontinental migration resulting in successful colonisation have also been revealed. B. plicatilis is composed of a group of several ancient species and sympatry is common. Despite this, the presence of cosmopolitan species in this species complex cannot be discounted. I discuss future priorities and point out the main areas where our knowledge is still insufficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call