Abstract

In this paper we propose an ab initio method to solve quantum many-body problems of molecular dynamics where both electronic and nuclear degrees are represented by ensembles of trajectories and guiding waves in physical space. Both electrons and nuclei can be treated quantum mechanically where the guiding waves obey a set of coupled Schrodinger equations (quantum-quantum description) or, alternatively, coupled Schrodinger-Newtonian equations are solved for the quantum-classical approximation. The method takes into account local and nonlocal quantum correlation effects in a self-consistent manner. The general formalism is applied to one- and two-dimensional hydrogen molecules subjected to a strong ultrashort optical pulse. Comparison is made with the results from the "exact" Ehrenfest molecular dynamics for the molecular ionization and for the evolution of the internuclear distance as the molecule dissociates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.