Abstract

An account of recent developments in the study of molecular dynamics with the inclusion of quantum exchange effects is presented. Approaches for quantum dynamical calculations are reviewed and the determination of time correlation functions is a special point of focus. It is shown that the exact basis set techniques can be used to perform highly accurate calculations but are restricted to relatively small systems since computational cost scales exponentially with system size. Alternate formulations can be introduced to circumvent this problem, and semi-classical initial value representation and Feynman path centroid approaches are considered. It is then showed that from a practical point of view, for complex bosonic systems such as doped helium clusters, Quantum Monte Carlo techniques can currently be used for the calculation of quantities of experimental interest. A perspective on future prospects for the calculation of real time correlation functions of bosonic nano-scale systems is presented

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call