Abstract

Using molecular dynamics simulation, we studied the wetting properties of a surface textured with hydrophobic pillars, several nanometers in size. The drying transition of water confined between square or circular pillars was related to the Wenzel (WZ) to Cassie-Baxter (CB) transition of a water droplet deposited on periodic pillars. The inter-pillar spacing at which the drying occurs was compared to that predicted from the continuum theory. Such a comparison revealed that the line tension plays an important role in the drying behavior of the present nm-sized pillars. The water molecules near the pillar walls were layered and ordered in orientation. Our simulation showed a long-lived CB state which eventually turns into the WZ state. In this transition, water slowly penetrated down into the inter-pillar gap until it reached the half height of the pillar, and then quickly reached the base of the pillar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call