Abstract

Various epoxy resins are used in the electronic industry as encapsulants, adhesive, printed wiring boards, electronic packagings, and so on. In this study, molecular dynamics method is employed to simulate the tensile deformation of the typical electronic epoxy resin. An efficient cross-linking procedure is developed to build the molecular model. Based on the cross-linking algorithm, the effects of moisture content, cross-linking conversion, strain rate, and temperature on the mechanical properties of epoxy resins are investigated. The stress-strain curves are plotted. Also the Young's modulus and Poisson ratio are calculated. The simulation results are compared with existing experimental data. Good agreements are observed. The results show that mechanical properties of epoxy resin decrease obviously with increasing moisture content and temperature. However the high cross-linking conversion and strain rate enhance the mechanical properties of resin. This study is significant to understanding the mechanical properties of cross-linking epoxies in high temperature and high humidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call