Abstract

Molecular dynamics simulations were performed to study the diffusion behavior of hydrogen atoms in body-centered cubic(bcc) tungsten(W). The energy distribution of a single hydrogen atom in the (001) plane of tungsten lattice was computed. The values of diffusion barriers agree well with other theoretical and experimental results. The interaction between an H atom and a vacancy was simulated, which shows evidence of strong binding effect. The temperature effect on the diffusion behavior of hydrogen atoms was investigated. The critical temperature for an H atom to diffuse in bulk W with and without vacancies were calculated to be 950 K and 450 K, respectively, which is supported by several experimental results. In addition, the diffusion coefficient of hydrogen atoms in tungsten was evaluated and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.