Abstract
Liquid lithium has been considered as a candidate material for several components of future fusion devices. Since the containment materials are usually ferrous alloys, molecular dynamics simulations were performed to study the diffusion behavior of lithium atoms along <110> tilt grain boundaries (GB) including Σ9{114}, Σ11{113}, Σ3{112} and Σ11{332} in α-Fe. The binding energies of a Li interstitial to the GBs were calculated. The results suggest that all the GBs have strong binding effect on the Li atom. The critical temperatures for the Li atom to diffuse were determined. The diffusion process of a Li interstitial in the GBs was systematically analyzed. It turns out that the diffusion mechanism depends on the GB structures. For Σ11{113} and GB Σ9{114}, the Li atom was trapped by the Frenkel defect around the GBs at 300K and 400K respectively and therefore the diffusion was slowed down rapidly. For Σ3{112}, no defects were formed around GB and the Li atom diffused into Fe bulk at 700K and above. For Σ3{112}, the diffusion process is driven by the movement of the GB. Finally, the diffusion coefficient, as well as the activation energy, was evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.