Abstract

The new concept of using nanowires as building blocks for logic and memory circuits makes it very necessary to fully understand the mechanical behaviors of these nanowires. Embedded-atom method is employed to carry out three-dimensional molecular dynamics simulations of the mechanical properties of rectangular cross-section copper nanowire. A stable free-relaxation state and the stress–strain relation of nanowire under extension are obtained. The elastic modulus, yielding strength and deformation are studied. The surface effect, size effect, and temperature effect on the extension property of metal nanowire are discussed in detail. The simulation results from our present work show that at nanoscale surface atoms play an important role on the mechanical behaviors of nano-structures. This study of mechanical properties of metal nanowires will be helpful to the design, manufacture and manipulation of nano-devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.