Abstract
In this study, three-dimensional MD simulations are carried out to study the nanometric scratching process. The ploughing friction coefficient and the adhesion friction coefficient are distinguished for the first time using MD simulations. The contribution of chip to friction coefficient is also evaluated. The simulation results show that the macroscale theory can qualitatively evaluate the ploughing friction coefficient, but it slightly overestimates the ploughing friction coefficient on the nanoscale for the scratching depths studied. It is found that the adhesion friction coefficient is independent of the scratching depth as predicted by macroscale theory. It is also found that the contribution of chip to friction coefficient is independent of the scratching depth and cannot be neglected on the nanoscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.