Abstract

The axial mechanical properties of calcium silicate hydrate during uniaxial tension or stress have been investigated by molecular dynamic simulations. Based on the classic calcium-silicate-hydrate model, the influence of calcium to silicate ratio and temperature are studied in detail. It demonstrated that calcium silicate hydrate with different Ca/Si ratio have similar stress-strain curves under uniaxial compression, but greatly difference on the uniaxial tension behaviors. The uniaxial tensile properties was affected by temperature that the strain rate in the low-temperature is higher than that in high temperature. The work in this paper reveals the mechanical properties of calcium silicate hydrate at the nanoscale and establishes the foundation explore the failure mechanism of cement or cement-based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.