Abstract
We have used direct non-equilibrium molecular dynamics computer simulations to study the influence of an aluminosilicate slit pore on thermal diffusion in equimolar methane- n -decane. We have computed the Soret coefficient S T as a function of the pore width. The S T values deviate from those in a pore-free situation only for pores narrower than 35 Å. We have then investigated the possible causes for this deviation. We have noticed that the solid behaves as a thermal short circuit for the liquid but this has no consequence on the thermal and solutal profiles in the mixture. The main influence of the confinement of the liquid lies in the 'freezing' of the layer of molecules in contact with the pore walls. Outside this layer, the thermal diffusive behaviour of the mixture does not depart from that in the bulk fluid. This finding has enabled us to compute a 'corrected' Soret coefficient where the influence of the porous medium is eliminated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.