Abstract

Molecular dopants such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) can interact with conjugated polymers such as poly(3-hexylthiophene-2,5-diyl) (P3HT) in two different ways: they can undergo integer charge transfer (ICT) or they can form a partial-charge-transfer complex (CTC). Both are seen experimentally, but the CTC has been challenging to characterize, making it difficult to answer questions such as the following. Which polymorph is more stable? Do they have similar barriers for formation? Is there a thermodynamic route to convert one to the other? Here, we study the structure and the thermodynamics of bulk F4TCNQ-doped P3HT with all-atom molecular dynamics simulations, using thermodynamic integration to calculate the relative free energies. We find that the ICT and CTC polymorphs have similar thermodynamic stabilities. The barrier to create the ICT polymorph, however, is lower than that to make the CTC polymorph, because the ICT polymorph has a small critical nucleus, but the critical nucleus for the CTC polymorph is larger than what we can simulate. Moreover, simulated thermal annealing shows that the activation barrier for converting the CTC polymorph to the ICT polymorph is relatively modest. Overall, the simulations explain both the observed structures and the thermodynamics of F4TCNQ-doped P3HT and offer guidelines for targeting the production of a desired polymorph for different applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call