Abstract

The interactions of antifreeze protein (AFP) type I, antifreeze glycoproteins, polyvinyl pyrrolidone (PVP), and various amino acids with ice are investigated using Cerius2, a molecular modelling tool. Binding energies of these additives to a major ice crystal face {001} are computed. Binding energy comparison of threonine molecules (by themselves) and as threonine residues within AFP type I demonstrate their role in improving AFP's binding ability to the ice crystal face. The shifts in onset points of ice crystallization with AFP type I, PVP, and amino acids are measured using differential scanning calorimetry. These values when correlated with their respective binding energies reveal a direct proportionality and demonstrate AFP's effectiveness in inhibiting growth and nucleation of ice, over amino acids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.