Abstract
We propose a system that avoids the open ends of the nanotube, we used a device consisting of flagellum (FLA) inside a nanotorus (NT) formed by carbon atoms. The flagellum consists of a C20 nanosphere with fixed size of tail within the NT. The full system consists of a closed loop drive and static nanotubes and nanospheres not static with different sizes of flagella released inside the nanotube, with each simulation, allows the relaxation between (internal and external NT). The nanospheres result in a system that provides movement of Van der Waals. The simulations were done by well-known classic molecular dynamics with standard parameterization. We calculate thermodynamic properties of these devices as heat capacity and molar entropy variation. For this system were obtained properties such as: the speed of nanospheres plagued the efficiency of molecular motor versus time, the kinetic energy, potential energy and total energy in each of the simulations. In our calculations, this system has a number of carbon atoms ranging from (2721 until 2728) with up to almost 10 ps simulation. These facts can be useful for the construction of new molecular machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.