Abstract

The α–β transition in quartz is investigated by molecular dynamics simulations in the constant stress ensemble. Based on a frequently used two-body interaction potential for silica, it is found that anomalies in the elastic constants are at least in semiquantitative agreement with experiment despite the fact that no anomaly in the c/a ratio is observed in the simulations. A finite-size scaling analysis shows that first-order Landau theory is applicable to the employed model potential surface. This statement also applies to the susceptibility below the transition temperature T tr, which has not yet been measured experimentally. Examination of the local order near T tr reveals that the deformation of SiO4 tetrahedral units is equally large in the β phase as in the α phase. However, large hysteresis effects can be observed in the local structure for distances r > 4 A. The results are in agreement with the picture of a first-order displacive phase transformation which is driven by the motion of deformed tetrahedral SiO4 units. Yet, the fast oscillations of oxygen atoms are around (time-dependent) positions that do not correspond to the ideal oxygen positions in β-quartz. The averaged configurations resemble the ideal structure only if averaged over at least a few nanoseconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.