Abstract

Molecular dynamics simulations of NaCl fluid are used to understand the behavior of ionic fluid to screen the field generated by charges on the ionic crystal surfaces in absence of any external electric field. The NaCl fluid in the strongly coupled regime (corresponding to the melt) in contact with the charged octopolar (111) NaCl surface shows that the spatial correlations decay in an oscillatory manner, with a screening length lambdaQ given by the envelope of the damped oscillations. By contrast to the Debye-Huckel theory, in the strongly coupled regime, lambdaQ increases with increasing coupling strength (also seen in bulk ionic simulations). The NaCl fluid confined between neutral (100) NaCl surfaces also shows weak oscillatory charge decay near the surface. Similar oscillatory exponential decay was seen when the NaCl fluid was confined between two analytically smooth neutral walls. The origin of these oscillations was due to the difference in ion sizes. NaCl fluid confined between neutral octopolar (110) and dipolar (110) surface show stronger density oscillations than (100) surface but comparatively very weak charge oscillations. This paper shows that the strength of the charges on the crystal surfaces is enough to induce a characteristic spatial distribution of charges in the contacting fluid and the extent of distribution depends on the type of surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.