Abstract
Atomistic molecular dynamics (AMD) simulations are utilized to simultaneously explore the detailed pair interactions, interfacial microstructure, and nanoscale (phase-separated) morphology of a series of thermally annealed C60-MEH-PPV (monomer and oligomer) (poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene)) hybrids. The present study provides essential details for understanding fundamental particle interactions that regulate the microscopic (structural and morphological) features of a standard polymer-fullerene material, paving the way to the eventual goal of capturing the photovoltaic physics of similar hybrid systems widely viewed as a potential alternative to the conventional (inorganic) semiconducting materials. Specifically, we show that two dominant interfacial pair C60-MEH-PPV-mer configurations—denoted as “face-on” or “side-on” motif—can thus be identified. These two motifs seem to be rather universal, and are shown to be dictated by many-body energetic forces in a condensed phase, as they display clear independence on the effects of system temperature, blending ratio, and chain connectivity. Importantly, the pair configurations (which should embed precise information on separation distance and mutual alignment) so unraveled provide an unambiguous first step toward resolving quantum-mechanic properties relevant to the photovoltaic performance of a hybrid material. Although the simulation length scale is limited for one to unequivocally reveal bulk phase behavior, the results on nanoscale phase morphologies are in accord with recent experimental trends regarding the effects of polymer molecular weight and blending ratio. Future outlooks of utilizing the established molecular system for predicting light adsorption and interfacial charge behavior are remarked.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.