Abstract
The high-temperature behavior of both a high-angle twist grain boundary and a free surface on the (110) plane of silicon are investigated using molecular dynamics and the Stillinger-Weber potential. It is found that, above the thermodynamic melting point, melting is nucleated at the grain boundary or surface and propagates through the system with a velocity that increases with temperature. We conclude that, due to the relatively fast nucleation times, melting in real crystals should be initiated at grain boundaries and surfaces, a conclusion that is entirely in accord with experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.