Abstract

Graphene oxide has been recently used to create cementitious nanocomposites with enhanced mechanical properties and durability. To examine the improvement on the mechanical properties of cement by adding graphene oxide, the understanding of the interfacial stress transfer is a key. In this work, pull-out tests were carried out using molecular dynamics simulations, incorporating cement and graphene oxide, to determine the shearing mechanism at the interface. For the first time, the shear stress-displacement curve, which represents the bond-slip relation has been calculated for a graphene oxide/cement nanocomposite at the molecular scale. This relation is significant and essential in multi-scale numerical modeling as it defines the mechanical properties for the interface elements. A yielding-like phase is found prior to the shear strength and a roughly bilinear softening phase (i.e. fracture/damage). Furthermore, the shear strength has been found in the range of 647.58±91.18MPa, based on different repeated simulations, which indicates strong interfacial bonding strength in graphene oxide cement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.