Abstract

Interfacial adhesion between metals and organic polymers plays a crucial role in the mechanical properties and reliability performance of multiplayer thin film structures. To improve their interfacial bonding strength and so the reliability, the self-assembled monolayer (SAM) method is considered as an effective means. The present study is devoted to studying the effects of SAM coating on the interfacial bonding strength of the Au-epoxy and the Au–Au bonding structures through molecular dynamics (MD) simulation. Three different types of functionalized alkanethiol SAMs (SH(CH 2) n X, X = CH 3, OH, NH 2) chemisorbed onto two different Au crystal planes, i.e., (1 0 0) and (1 1 1), are considered. The study starts from the characterization of the interfacial bonding strength of both the SAM-coated Au-epoxy and Au–Au systems, followed by the investigation of the dependence of the interfacial bonding strength on the chain lengths and tail groups of the n-alkanethiolates. A comparative study of the effects of the crystal orientation of Au substrate on the bonding strength is reported, and the elastic moduli of these SAMs through uniaxial tensile simulation are also examined. The calculated results are compared with the published experimental data, and also with each other to identify the optimal SAM candidate. Results show that the interfacial bonding strength of the SAM-coated Au-epoxy and Au–Au systems exhibits a strong dependency on the crystal orientation of Au substrate and also on the chain length of the monolayer where it tends to increase with an increasing SAM chain length. In specific, the interfacial bonding strength of the SH(CH 2) n CH 3 SAM-coated Au–Au joint would reach a maximal value at the chain length n = 8 while that of the SAM/epoxy interface in the SH(CH 2) n CH 3 SAM-coated Au-epoxy system attains a minimal value at n = 4 and becomes the maximum at n = 10, regardless of the crystal orientation of the Au substrates. Besides, the Au substrate with (1 1 1) crystal orientation would outperform the Au(1 0 0) substrate in the SAM/epoxy interfacial bonding strength of the SAM-coated Au-epoxy system while there is a totally opposite result for that of the SAM-coated Au–Au joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.