Abstract

Explosive crystallization of SiGe alloys and boron-doped SiGe alloys is studied using a special molecular dynamics construction developed by the authors. For the case of Si1-xGex alloys, the simulations indicate that explosive crystallization should occur over the entire compositional range of Si1-xGex alloys at velocities high enough to prevent Ge segregation. The results show qualitative agreement with experimental results for Si-rich systems: Over a range of 0−25% germanium, the simulations predicted a nonlinear decrease in velocity that roughly matches the slope and extent of the rapid drop in interface velocity observed experimentally. An analogous investigation of boron-doped Si1-xGex alloys showed that the limit of incorporation of boron during explosive crystallization is strongly dependent on the amount of germanium present and that explosive crystallization is capable of limiting transient enhanced diffusion throughout the crystallization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.