Abstract

Some recent results of molecular dynamics simulations of the condensation/evaporation and velocity distribution of n-dodecane (C12H26), the closest approximation to Diesel fuel, at a liquid-vapour interface in equilibrium state are briefly described. It is shown that molecules at the liquid surface need to gain relatively large translational energy to evaporate. Vapour molecules with large translational energy can easily penetrate deep into the transition layer and condense in the liquid phase. The evaporation/condensation coefficient is shown to be controlled mainly by the translational energy. The properties of the velocity distribution functions of molecules at the liquid, interface and vapour regions are summarised. It has been shown that the distribution functions of evaporated and reflected molecules for the velocity component normal to the surface deviate considerably from the Maxwellian, while the distribution function for all molecules leaving this surface (evaporated and reflected) is close to Maxwellian. The evaporation coefficient has been shown to increase with increasing molecular energy in the direction perpendicular to the surface. These properties have been recommended to be taken into account when formulating boundary conditions for kinetic modelling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.