Abstract

To investigate the effect of polymer binders on the monoexplosive, molecular dynamics simulations were performed to study the binding energies, mechanical properties, and detonation performances of the bicyclo-HMX-based polymer-bonded explosives (PBXs). The results show that the binding energies on different crystalline surfaces of bicyclo-HMX decrease in the order of (0 1 0) > (1 0 0) > (0 0 1). On each crystalline surface, binding properties of different polymers with the same chain segment are different from each other, while those of the polymers in the same content decrease in the sequence of PVDF > F 2311 > F 2314 ≈ PCTFE. The mechanical properties of a dozen of model systems (elastic coefficients, various moduli, Cauchy pressure, and Poisson's ratio) have been obtained. It is found that mechanical properties are effectively improved by adding small amounts of fluorine polymers, and the overall effect of fluorine polymers on three crystalline surfaces of bicyclo-HMX changes in the order of (0 1 0) > (0 0 1) ≈ (1 0 0). In comparison with the base explosive, detonation performances of the PBXs decrease slightly, but they are still superior to TNT. These suggestions may be useful for the formulation design of bicyclo-HMX-based PBXs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.