Abstract

In this paper, molecular dynamics (MD) simulation is utilized for the investigation of impact of heating rates on Au and Cu nanoparticles alloying process. Aggregation of contacted nanoparticles experiences three stages due to the contacting, while the alloying process can be distinguished into five regimes because of the contacting and melting. Different heating rates result in different contact temperatures. The decrease of the potential energy can be observed when the temperature reaches the melting temperature. When the temperature reaches the melting point, shrinkage ratio and relative gyration radius have drastic changes during the alloying process. It is shown that heating rates have an apparent effect on the shrinkage ratio and the relative gyration radius during the fusing process, and the shrinkage ratio and the relative gyration radius of Au and Cu alloying systems with lower heating rates have relative larger increasing ratio and decreasing ratio, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.