Abstract

This work involves the determination of transport coefficients and equation of state of supercritical fluids by molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. The MD program uses an effective Lennard-Jones potential, linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Previously, simulations had been carried out on pure argon, nitrogen and oxygen, and this has now been extended to ethylene, C^H^, at various supercritical conditions, with shear viscosity and thermal conductivity coefficients, and pressures computed for most of the conditions. The results compare well with experimental and National Institute of Standards and Technology (NIST) values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call