Abstract

Supercooled liquids near the glass transition exhibit the phenomenon of heterogeneous relaxation; at any specific time, a nominally homogeneous equilibrium fluid undergoes dynamic fluctuations in its structure on a molecular distance scale with rates that are very different in different regions of the sample. Several theoretical and simulation studies have suggested a change in the nature of the dynamics of fluids as they are supercooled, leading to the concept of a dynamic crossover that is often associated with mode coupling theory. Here, we will review the use of molecular dynamics computer simulation methods to investigate heterogeneous dynamics and dynamic crossovers in models of atomic liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call